FURNITURE: Desain Interior Rumah Minimalis Tropis

Authors

Andrew Stefano
Politeknik Pertanian Negeri Samarinda

Synopsis

Buku ajar yang berjudul Desain Interior Rumah Tinggal Minimalis Tropis adalah buku ajar yang ditujukan untuk mahasiswa Program Studi D4 Rekayasa Kayu Politeknik Pertanian Samarinda pada Mata Kuliah Furniture. Mempelajari tentang interior rumah tinggal minimalis tropis dijabarkan dalam beberapa unit pembelajaran, yaitu konsep desain interior rumah tinggal minimalis dan ergonomic desain interior rumah tinggal minimalis. Diharapkan dengan buku ajar ini mahasiswa dapat mengembangkan lebih kreatif dalam membuat desain interior rumah tinggal minimalis tropis.

Author Biography

Andrew Stefano , Politeknik Pertanian Negeri Samarinda

Andrew Stefano, ST., MT.Arch adalah seorang pengajar perencanaan arsitektur, perencanaan pengembangan wilayah, menggambar teknik, pengantara arsitektur, komunikasi arsitektur dan ilmu ukur tanah. Beliau sebagai dosen tetap di Program Studi Teknologi Geomatika sejak tahun 2009 hingga sekarang dan dosen luar biasa di Program Studi Teknik Arsitektur Universitas Nahdlatul Ulama Kalimantan Timur sejak tahun 2015 hingga sekarang. Ruang lingkup keilmuan perencanaan bangunan 2D dan 3D, animasi, pengukuran, rancang bangun, penulis buku cara mudah menggunakan AutoCAD untuk semua versi dan bidang ilmu, ilmu ukur tanah I.

Ayahnya adalah H. Tasrif Oermar, B.Sc. dan ibunya Asmiyarti (alm). Istrinya adalah Dr. Sri Endayani, S.Hut., MP., seorang kehutanan, penulis dan staf pengajar Program Studi Kehutanan Fakultas Pertanian Universitas 17 Agustus 1945 Samarinda. Lulus Program Doktor Kehutanan Universitas Gadjah Mada (2021). Beliau juga aktif di beberapa jurnal ilmiah, narasumber dan jejaring sosial, penulis juga tercatat sebagai staf ahli pengukuran di 10 Kecamatan Samarinda Provinsi Kalimantan Timur.

References

Ball, B. L., Long, N., Fleming, K., Balbach, C., Ball, B. L., Long, N., Fleming, K., Balbach, C., Ball, B. L., Long, N., Fleming, K., & Balbach, C. (2020). An open source analysis framework for large-scale building energy modeling An open source analysis framework for large-scale building energy modeling. https://doi.org/10.1080/19401493.2020.1778788

Bamdad, K., Cholette, M. E., Bell, J., & Bell, J. (2020). Building energy optimization using surrogate model and active sampling. https://doi.org/10.1080/19401493.2020.1821094

Brunetti, G. L., & Brunetti, G. L. (2020). Increasing the efficiency of simulation-based design explorations via metamodelling Increasing the efficiency of simulation-based design explorations via metamodelling. 1493. https://doi.org/10.1080/19401493.2019.1707875

Energyplus, E. M. S., Sardoueinasab, Z., Yin, P., & Neal, D. O. (2020). Pemodelan energi dan analisis unit terminal bertenaga kipas aliran udara variabel menggunakan Energy Management System. 1493. https://doi.org/10.1080/19401493.2019.1679260

Evins, R., Alexandra, R., Wiebe, E., Wood, M., Eames, M., Evins, R., Alexandra, R., Wiebe, E., Wood, M., & Dampak, M. E. (2018). Dampak variasi lokal dalam iklim maritim sedang pada penggunaan energi bangunan. 1493. https://doi.org/10.1080/19401493.2018.1536167

Evins, R., Alexandra, R., Wiebe, E., Wood, M., Eames, M., Evins, R., Alexandra, R., Wiebe, E., Wood, M., & Eames, M. (2018). The impact of local variations in a temperate maritime climate on building energy use. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2018.1536167

Fathollahzadeh, M. H., Tabares-velasco, P. C., & Tabares-velasco, P. C. (2020). Building control virtual test bed and functional mock-up interface standard : comparison in the context of campus energy modelling and control ABSTRACT. 1493(May). https://doi.org/10.1080/19401493.2020.1769191

Gagnon, R., Gosselin, L., Park, S., Stratbücker, S., Gagnon, R., Gosselin, L., Park, S., & Stratbücker, S. (2018). Comparison between two genetic algorithms minimizing carbon footprint of energy and materials in a residential building. 1493. https://doi.org/10.1080/19401493.2018.1501095

Gasparella, A., & Mahdavi, A. (2020). Special issue on the microclimatic boundary conditions in building simulation models. 1493, 2019–2021. https://doi.org/10.1080/19401493.2019.1698137

Ghiaus, C., & Alzetto, F. (2019). Design of experiments for Quick U-building method for building energy performance measurement. Journal of Building Performance Simulation, 0(0), 1–15. https://doi.org/10.1080/19401493.2018.1561753

Ghofrani, A., Nazemi, S. D., & Jafari, M. A. (2020). Prediction of building indoor temperature response in variable air volume systems ABSTRACT. 1493. https://doi.org/10.1080/19401493.2019.1688393

Lanahan, M., Engert, S., Kim, T., Tabares-velasco, P. C., Lanahan, M., Engert, S., Kim, T., & Tabares-, P. C. (2018). Rapid visualization of the potential residential cost savings from energy storage under time-of-use electric rates. Journal of Building Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1470203

Leroux, G., Mendes, N., Stephan, L., Pierrès, N. Le, Leroux, G., Mendes, N., Stephan, L., & Pierrès, N. Le. (2018). Innovative low-energy evaporative cooling system for buildings : study of the porous evaporator wall. 1493. https://doi.org/10.1080/19401493.2018.1501094

Lowcay, D., Gunay, H. B., Brien, W. O., Gunay, H. B., & Brien, W. O. (2020). Simulating energy savings potential with high- resolution daylight and occupancy sensing in open-plan offices and occupancy sensing in open-plan offices.

https://doi.org/10.1080/19401493.2020.1807604

Mahdavi, A., & Mahdavi, A. (2020). In the matter of simulation and buildings : some critical reflections. 1493. https://doi.org/10.1080/19401493.2019.1685598

Masi, R. F. De, Gigante, A., Ruggiero, S., Peter, G., Francesca, R., Gigante, A., Ruggiero, S., & Peter, G. (2020). The impact of weather data sources on building energy retrofit design : case study in heating-dominated climate of Italian backcountry heating-dominated climate of Italian backcountry. 1493. https://doi.org/10.1080/19401493.2020.1725131

Menberg, K., Heo, Y., & Choudhary, R. (2018). Influence of error terms in Bayesian calibration of energy system models. 1493(May). https://doi.org/10.1080/19401493.2018.1475506

Mendes, E., Mendes, N., & Mendes, E. (2019). An instructional design for building energy simulation e-learning : an interdisciplinary approach An instructional design for building energy simulation e-learning : an interdisciplinary approach. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2018.1560500

Murano, G., Dirutigliano, D., & Corrado, V. (2018). Improved procedure for the construction of a Typical Meteorological Year for assessing the energy need of a residential building. Journal of Building Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1479774

Nagpal, S., Mueller, C., Aijazi, A., & Reinhart, C. F. (2018). A methodology for auto-calibrating urban building energy models using surrogate modeling techniques. Journal of Building Performance Simulation, 0(0), 1–16.

https://doi.org/10.1080/19401493.2018.1457722

Ouf, M. M., Brien, W., Gunay, H. B., Ouf, M. M., Brien, W. O., & Gunay, H. B. (2020). Optimalisasi penggunaan listrik di gedung perkantoran di bawah ketidakpastian penghuni. 1493. https://doi.org/10.1080/19401493.2019.1680733

Ouf, M. M., Brien, W. O., Gunay, H. B., Ouf, M. M., Brien, W. O., & Optimization, H. B. G. (2020). Optimization of electricity use in office buildings under occupant uncertainty. 1493. https://doi.org/10.1080/19401493.2019.1680733

Pernigotto, G., Prada, A., Gasparella, A., Pernigotto, G., & Prada, A. (2019). Extreme reference years for building energy performance simulation Extreme reference years for building energy performance simulation. 1493.

https://doi.org/10.1080/19401493.2019.1585477

Ren, Z., Motlagh, O., & Chen, D. (2020). A correlation-based model for building ground- coupled heat loss calculation using Artificial Neural Network techniques A correlation-based model for building ground-coupled heat loss calculation using. 1493. https://doi.org/10.1080/19401493.2019.1690581

Salazar, E. M. De, & Sanz-calcedo, J. G. (2018). Study on the influence of maintenance operations on energy consumption and emissions in healthcare centres by fuzzy cognitive maps. 1493. https://doi.org/10.1080/19401493.2018.1543351

Saloux, E., Candanedo, J. A., & Candanedo, J. A. (2018). Controloriented model of a solar community with seasonal thermal energy storage : development , calibration and validation. 1493. https://doi.org/10.1080/19401493.2018.1523950

Salvati, A., Palme, M., Chiesa, G., & Kolokotroni, M. (2020). Built form , urban climate and building energy modelling : casestudies in Rome and Antofagasta. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2019.1707876

Saouri, A. M., Bat, E., Romani, Z., & Bozonnet, E. (2020). Integration of a practical model to assess the local urban interactions in building energy simulation with a street canyon energy simulation with a street canyon.

https://doi.org/10.1080/19401493.2020.1818829

Sardoueinasab, Z., Yin, P., & Neal, D. O. (2020). Energy modeling and analysis of variable airflow parallel fan-powered terminal units using Energy Management System ( EMS ) in EnergyPlus ABSTRACT. 1493.

https://doi.org/10.1080/19401493.2019.1679260

Sousa, G., Robinson, D., & Robinson, D. (2020). Enhanced EnHub : dynamic simulation of housing stock energy systems Enhanced EnHub : dynamic simulation of housing stock energy systems ABSTRACT. https://doi.org/10.1080/19401493.2020.1788641

Terms, F. (2020). Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration. 1493. https://doi.org/10.1080/19401493.2020.1723704

Togashi, E. (2018). Risk analysis of energy efficiency investments in buildings using the Monte Carlo method. Journal of Building Performance Simulation, 0(0), 1–19. https://doi.org/10.1080/19401493.2018.1523949

Xie, Y., Mendon, V., Halverson, M., Bartlett, R., Chen, Y., Rosenberg, M., Taylor, T., Liu, B., Xie, Y., Mendon, V., Halverson, M., Bartlett, R., Chen, Y., Rosenberg, M., Taylor, T., & Liu, B. (2018). Assessing overall building energy performance of a large population of residential single-family homes using limited field data. Journal of Building

Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1477833

FURNITURE:  Desain Interior Rumah Minimalis Tropis

Published

1 November 2021

Categories