Konstruksi Bangunan Kayu
Synopsis
Buku ajar yang berjudul Konstruksi Bangunan Kayu adalah buku ajar yang ditujukan untuk mahasiswa Program Studi D4 Rekayasa Kayu Politeknik Pertanian Samarinda pada Mata Kuliah Konstruksi Bangunan Kayu. Mempelajari tentang pengertian Konstruksi Bangunan Kayu. Diharapkan dengan buku ajar ini mahasiswa dapat Mampu menerapkan di lapangan dengan baik
References
Abdelhady, A. U., Spence, S. M. J., & McCormick, J. (2022). Risk and fragility assessment of residential wooden buildings subject to hurricane winds. Structural Safety, 94(February 2021), 102137. https://doi.org/10.1016/j.strusafe.2021.102137
Akan, A. E., Başok, G. Ç., Er, A., Örmecioğlu, H. T., Koçak, S. Z., Cosgun, T., Uzdil, O., & Sayin, B. (2021). Seismic evaluation of a renovated wooden hypostyle structure: A case study on a mosque designed with the combination of Asian and Byzantine styles in the Seljuk era (14th century AD). Journal of Building Engineering, 43(August). https://doi.org/10.1016/j.jobe.2021.103112
Alih, S. C., & Vafaei, M. (2019). Performance of reinforced concrete buildings and wooden structures during the 2015 Mw 6.0 Sabah earthquake in Malaysia. Engineering Failure Analysis, 102(April), 351–368. https://doi.org/10.1016/j.engfailanal.2019.04.056
Ames, K. M., & Shepard, E. E. (2019). Building wooden houses: The political economy of plankhouse construction on the southern Northwest Coast of North America. Journal of Anthropological Archaeology, 53(January), 202–221. https://doi.org/10.1016/j.jaa.2019.01.002
Bolmsvik, Å., & Brandt, A. (2013). Damping assessment of light wooden assembly with and without damping material. Engineering Structures, 49, 434–447. https://doi.org/10.1016/j.engstruct.2012.11.026
Elam, J., & Björdal, C. (2020). A review and case studies of factors affecting the stability of wooden foundation piles in urban environments exposed to construction work. International Biodeterioration and Biodegradation, 148(February), 104913. https://doi.org/10.1016/j.ibiod.2020.104913
Gomon, P., Gomon, S., Pavluk, A., & Homon, S. (2023). ScienceDirect ScienceDirect Innovative Method for Calculating Deflections of Wooden Beams Based on the Moment-Curvature Graph. Procedia Structural Integrity, 48(2021), 195–200. https://doi.org/10.1016/j.prostr.2023.07.148
Gonzalez, S., Chacra, E., Carreño, C., & Espinoza, C. (2022). Wooden mechanical metamaterials: Towards tunable wood plates. Materials and Design, 221, 110952. https://doi.org/10.1016/j.matdes.2022.110952
Gullbrekken, L., Kvande, T., & Time, B. (2017). Ventilated wooden roofs: Influence of local weather conditions-measurements. Energy Procedia, 132, 777–782. https://doi.org/10.1016/j.egypro.2017.10.029
Hahn, B., Werner, T. E., & Haller, P. (2019). Experimental and numerical investigations on adhesively bonded tubular connections for moulded wooden tubes. Construction and Building Materials, 229, 116829. https://doi.org/10.1016/j.conbuildmat.2019.116829
Heidenthaler, D., Leeb, M., Schnabel, T., & Huber, H. (2021). Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach. Energy, 233, 121138. https://doi.org/10.1016/j.energy.2021.121138
Hongisto, V., Alakoivu, R., Virtanen, J., Hakala, J., Saarinen, P., Laukka, J., Linderholt, A., Olsson, J., Jarnerö, K., & Keränen, J. (2023). Sound insulation dataset of 30 wooden and 8 concrete floors tested in laboratory conditions. Data in Brief, 49, 109393. https://doi.org/10.1016/j.dib.2023.109393
Hongisto, V., Laukka, J., Alakoivu, R., Virtanen, J., & Hakala, J. (2023). Suitability of standardized single-number ratings of impact sound insulation for wooden floors – Psychoacoustic experiment. 244(February). https://doi.org/10.1016/j.buildenv.2023.110727
Kang, C. W., Hashitsume, K., & Kolya, H. (2023). A resonator installed in a wooden puzzle board greatly enhances sound absorption capability at low frequency: A new approach. Results in Engineering, 17(December 2022), 101021. https://doi.org/10.1016/j.rineng.2023.101021
Kim, D. hun, Franzini, F., Jellesmark Thorsen, B., Berghäll, S., & Aguilar, F. X. (2023). Greener homes: Factors underpinning Europeans’ intention to live in multi-storey wooden buildings. Sustainable Production and Consumption, 39(May), 373–381. https://doi.org/10.1016/j.spc.2023.05.030
Krajewski, A., Bilski, P., Witomski, P., Bobiński, P., & Guz, J. (2020). The progress in the research of AE detection method of old house borer larvae (Hylotrupes bajulus L.) in wooden structures. Construction and Building Materials, 256. https://doi.org/10.1016/j.conbuildmat.2020.119387
Kristoffersen, M., & Log, T. (2022). Experience gained from 15 years of fire protection plans for Nordic wooden towns in Norway. Safety Science, 146(October 2021). https://doi.org/10.1016/j.ssci.2021.105535
Madrid Garcia, J. A., Yahaghi, E., & Movafeghi, A. (2021). Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method. Journal of Cultural Heritage, 49(xxxx), 115–122. https://doi.org/10.1016/j.culher.2021.02.008
Martín Seijo, M., Cruz Berrocal, M., Serrano Herrero, E., & Tsang, C. (2021). Wooden material culture and long-term historical processes in Heping Dao (Keelung, Taiwan). Journal of Archaeological Science, 133, 105443. https://doi.org/10.1016/j.jas.2021.105443
Michálková, D., & Ďurica, P. (2019). Analysis of the influence of the selected exterior surface finish on the thermo-technical behaviour of passive wooden constructions. Transportation Research Procedia, 40, 823–830. https://doi.org/10.1016/j.trpro.2019.07.116
Mirra, M., Gerardini, A., & Ravenshorst, G. (2022). Application of timber-based techniques for seismic retrofit and architectural restoration of a wooden roof in a stone masonry church. Procedia Structural Integrity, 44(2022), 1856–1863. https://doi.org/10.1016/j.prostr.2023.01.237
Naguib, H. M., Taha, E. O., Ahmed, M. A., & Kandil, U. F. (2022). Enhanced wooden polymer composites based on polyethylene and nano-modified wooden flour. Egyptian Journal of Petroleum, 31(4), 39–45. https://doi.org/10.1016/j.ejpe.2022.10.002
Nasiri, B., Kaasalainen, T., & Hughes, M. (2023). Resources , Conservation & Recycling Estimating the material intensity of wooden residential houses in Finland. Resources, Conservation & Recycling, 198(August), 107142. https://doi.org/10.1016/j.resconrec.2023.107142
Ojala, A., Kostensalo, J., Viik, J., Matilainen, H., Wik, I., Virtanen, L., & Muilu-Mäkelä, R. (2023). Psychological and physiological effects of a wooden office room on human well-being: Results from a randomized controlled trial. Journal of Environmental Psychology, 89(May 2022), 102059. https://doi.org/10.1016/j.jenvp.2023.102059
Petrović, B., Eriksson, O., & Zhang, X. (2023). Carbon assessment of a wooden single-family building – A novel deep green design and elaborating on assessment parameters. Building and Environment, 233(November 2022). https://doi.org/10.1016/j.buildenv.2023.110093
Pulakka, S., Vares, S., Nykänen, E., Saari, M., & Häkkinen, T. (2016). Lean Production of Cost Optimal Wooden nZEB. Energy Procedia, 96(October 2016), 202–211. https://doi.org/10.1016/j.egypro.2016.09.122
Qiao, Z. hui, Jiang, S. fei, Tang, W. jie, & Li, N. lei. (2021). Dual-indicator prediction model for the safety of Chinese ancient wooden structures subjected to bioerosion. Journal of Building Engineering, 43(May), 102868. https://doi.org/10.1016/j.jobe.2021.102868
Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P., & Burnard, M. D. (2021). Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329. https://doi.org/10.1016/j.jclepro.2021.129587
Rahim, M., Djedjig, R., Wu, D., Bennacer, R., & Ganaoui, M. EL. (2023). Experimental investigation of hygrothermal behavior of wooden-frame house under real climate conditions. Energy and Built Environment, 4(1), 122–129. https://doi.org/10.1016/j.enbenv.2021.09.002
Raposo, P. C., Martins, J., Correia, J. A. F. O., Salavessa, M. E., Reis, C., Xavier, J. M. C., & De Jesus, A. M. P. (2017). Characterization of the Tensile Mechanical Behavior of Wooden Construction on Materials from Historic Building. Procedia Structural Integrity, 5, 1086–1091. https://doi.org/10.1016/j.prostr.2017.07.083
Schieweck, A. (2021). Very volatile organic compounds (VVOC) as emissions from wooden materials and in indoor air of new prefabricated wooden houses. Building and Environment, 190(December 2020), 107537. https://doi.org/10.1016/j.buildenv.2020.107537
Taleb, R., Ramanantoa, H., Reynolds, T., Beckett, C. T. S., Huang, Y., Rakotoarivony, M., Gagnon, A. S., & Andriamaro, L. (2023). Fragility assessment of traditional wooden houses in Madagascar subjected to extreme wind loads. Engineering Structures, 289(May), 116220. https://doi.org/10.1016/j.engstruct.2023.116220
Tobisková, N., Malmsköld, L., & Pederson, T. (2023). ScienceDirect Head-Mounted Augmented Reality Support for Assemblers of Wooden Trusses. Procedia CIRP, 119, 134–139. https://doi.org/10.1016/j.procir.2023.02.130
Toivonen, R., Vihemäki, H., & Toppinen, A. (2021). Policy narratives on wooden multi-storey construction and implications for technology innovation system governance. Forest Policy and Economics, 125. https://doi.org/10.1016/j.forpol.2021.102409
Toppinen, A., Röhr, A., Pätäri, S., Lähtinen, K., & Toivonen, R. (2018). The future of wooden multistory construction in the forest bioeconomy – A Delphi study from Finland and Sweden. Journal of Forest Economics, 31, 3–10. https://doi.org/10.1016/j.jfe.2017.05.001
Vermote, L., De Roos, J., Cnockaert, M., Vandamme, P., Weckx, S., & De Vuyst, L. (2023). New insights into the role of key microorganisms and wooden barrels during lambic beer fermentation and maturation. International Journal of Food Microbiology, 394(February), 110163. https://doi.org/10.1016/j.ijfoodmicro.2023.110163
Vestin, A., & Säfsten, K. (2021). Smart Manufacturing in the Wooden Single-Family House Industry - Status of Industry 4.0. Procedia CIRP, 104(March), 1488–1493. https://doi.org/10.1016/j.procir.2021.11.251
Vihemäki, H., Toppinen, A., & Toivonen, R. (2020). Intermediaries to accelerate the diffusion of wooden multi-storey construction in Finland. Environmental Innovation and Societal Transitions, 36(April), 433–448. https://doi.org/10.1016/j.eist.2020.04.002
Viholainen, N., Kylkilahti, E., Autio, M., Pöyhönen, J., & Toppinen, A. (2021). Bringing ecosystem thinking to sustainability-driven wooden construction business. Journal of Cleaner Production, 292. https://doi.org/10.1016/j.jclepro.2021.126029
Viljanen, A., Lähtinen, K., Kanninen, V., & Toppinen, A. (2023). A tale of five cities: The role of municipalities in the market diffusion of wooden residential multistory construction and retrofits. Forest Policy and Economics, 153(August 2022). https://doi.org/10.1016/j.forpol.2023.102991
Wegerer, P., & Bednar, T. (2017). Hygrothermal performance of wooden beam heads in inside insulated walls considering air flows. Energy Procedia, 132, 652–657. https://doi.org/10.1016/j.egypro.2017.09.710