Konstruksi Bangunan Kayu

Authors

Andrew Stefano
Politeknik Pertanian Negeri Samarinda
Fathiah Fathiah
Politeknik Pertanian Negeri Samarinda

Synopsis

Buku ajar yang berjudul Konstruksi Bangunan Kayu adalah buku ajar yang ditujukan untuk mahasiswa Program Studi D4 Rekayasa Kayu Politeknik Pertanian Samarinda pada Mata Kuliah Konstruksi Bangunan Kayu. Mempelajari tentang pengertian Konstruksi Bangunan Kayu. Diharapkan dengan buku ajar ini mahasiswa dapat Mampu menerapkan di lapangan dengan baik

Author Biographies

Andrew Stefano, Politeknik Pertanian Negeri Samarinda

Andrew Stefano, ST., MT.Arch adalah seorang pengajar perencanaan arsitektur, perencanaan pengembangan wilayah, menggambar teknik, pengantara arsitektur, komunikasi arsitektur dan ilmu ukur tanah. Beliau sebagai dosen tetap di Program Studi Teknologi Geomatika sejak tahun 2009 hingga sekarang dan dosen luar biasa di Program Studi Teknik Arsitektur Universitas Nahdlatul Ulama Kalimantan Timur sejak tahun 2015 hingga sekarang. Ruang lingkup keilmuan perencanaan bangunan 2D dan 3D, animasi, pengukuran, rancang bangun, penulis buku Cara Mudah Menggunakan AutoCAD Untuk Semua Versi dan Bidang Ilmu, Ilmu Ukur Tanah I, Furniture, Menggambar Teknik dan Silvikultur Hutan Tanaman.

Ayahnya adalah H. Tasrif Oermar, B.Sc. dan ibunya Asmiyarti (alm). Istrinya adalah Dr. Sri Endayani, S.Hut., M.P., seorang kehutanan, penulis dan staf pengajar Program Studi Kehutanan Fakultas Pertanian Universitas 17 Agustus 1945 Samarinda. 

Fathiah Fathiah, Politeknik Pertanian Negeri Samarinda

Ir. Fathiah. MP. Lahir Samarinda, 20 Agustus 1959. Pendidikan Tinggi S1 lulus tahun 1986 dan S2 lulus tahun 2008 di Fakultas Kehutanan Universitas Mulawarman. Memulai karier di Politeknik Pertanian Negeri Samarinda pada tahun 1994 hingga sekarang sebagai staf pengajar di Program Studi Pengelolaan Hutan dan menjabat sebagai Kepala Sosial Ekonomi tahun 2016-2018 dan sebagai Kepala Laboratorium Perencanaan Hutan Politeknik Pertanian Negeri Samarinda sejak 2018 hingga 2021.Penulis buku ajar Penyuluhan Hutan tahun 2019, Manajemen Hutan tahun 2021 dan Silvikultur Hutan Tanaman tahun 2022.

References

Abdelhady, A. U., Spence, S. M. J., & McCormick, J. (2022). Risk and fragility assessment of residential wooden buildings subject to hurricane winds. Structural Safety, 94(February 2021), 102137. https://doi.org/10.1016/j.strusafe.2021.102137

Akan, A. E., Başok, G. Ç., Er, A., Örmecioğlu, H. T., Koçak, S. Z., Cosgun, T., Uzdil, O., & Sayin, B. (2021). Seismic evaluation of a renovated wooden hypostyle structure: A case study on a mosque designed with the combination of Asian and Byzantine styles in the Seljuk era (14th century AD). Journal of Building Engineering, 43(August). https://doi.org/10.1016/j.jobe.2021.103112

Alih, S. C., & Vafaei, M. (2019). Performance of reinforced concrete buildings and wooden structures during the 2015 Mw 6.0 Sabah earthquake in Malaysia. Engineering Failure Analysis, 102(April), 351–368. https://doi.org/10.1016/j.engfailanal.2019.04.056

Ames, K. M., & Shepard, E. E. (2019). Building wooden houses: The political economy of plankhouse construction on the southern Northwest Coast of North America. Journal of Anthropological Archaeology, 53(January), 202–221. https://doi.org/10.1016/j.jaa.2019.01.002

Bolmsvik, Å., & Brandt, A. (2013). Damping assessment of light wooden assembly with and without damping material. Engineering Structures, 49, 434–447. https://doi.org/10.1016/j.engstruct.2012.11.026

Elam, J., & Björdal, C. (2020). A review and case studies of factors affecting the stability of wooden foundation piles in urban environments exposed to construction work. International Biodeterioration and Biodegradation, 148(February), 104913. https://doi.org/10.1016/j.ibiod.2020.104913

Gomon, P., Gomon, S., Pavluk, A., & Homon, S. (2023). ScienceDirect ScienceDirect Innovative Method for Calculating Deflections of Wooden Beams Based on the Moment-Curvature Graph. Procedia Structural Integrity, 48(2021), 195–200. https://doi.org/10.1016/j.prostr.2023.07.148

Gonzalez, S., Chacra, E., Carreño, C., & Espinoza, C. (2022). Wooden mechanical metamaterials: Towards tunable wood plates. Materials and Design, 221, 110952. https://doi.org/10.1016/j.matdes.2022.110952

Gullbrekken, L., Kvande, T., & Time, B. (2017). Ventilated wooden roofs: Influence of local weather conditions-measurements. Energy Procedia, 132, 777–782. https://doi.org/10.1016/j.egypro.2017.10.029

Hahn, B., Werner, T. E., & Haller, P. (2019). Experimental and numerical investigations on adhesively bonded tubular connections for moulded wooden tubes. Construction and Building Materials, 229, 116829. https://doi.org/10.1016/j.conbuildmat.2019.116829

Heidenthaler, D., Leeb, M., Schnabel, T., & Huber, H. (2021). Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach. Energy, 233, 121138. https://doi.org/10.1016/j.energy.2021.121138

Hongisto, V., Alakoivu, R., Virtanen, J., Hakala, J., Saarinen, P., Laukka, J., Linderholt, A., Olsson, J., Jarnerö, K., & Keränen, J. (2023). Sound insulation dataset of 30 wooden and 8 concrete floors tested in laboratory conditions. Data in Brief, 49, 109393. https://doi.org/10.1016/j.dib.2023.109393

Hongisto, V., Laukka, J., Alakoivu, R., Virtanen, J., & Hakala, J. (2023). Suitability of standardized single-number ratings of impact sound insulation for wooden floors – Psychoacoustic experiment. 244(February). https://doi.org/10.1016/j.buildenv.2023.110727

Kang, C. W., Hashitsume, K., & Kolya, H. (2023). A resonator installed in a wooden puzzle board greatly enhances sound absorption capability at low frequency: A new approach. Results in Engineering, 17(December 2022), 101021. https://doi.org/10.1016/j.rineng.2023.101021

Kim, D. hun, Franzini, F., Jellesmark Thorsen, B., Berghäll, S., & Aguilar, F. X. (2023). Greener homes: Factors underpinning Europeans’ intention to live in multi-storey wooden buildings. Sustainable Production and Consumption, 39(May), 373–381. https://doi.org/10.1016/j.spc.2023.05.030

Krajewski, A., Bilski, P., Witomski, P., Bobiński, P., & Guz, J. (2020). The progress in the research of AE detection method of old house borer larvae (Hylotrupes bajulus L.) in wooden structures. Construction and Building Materials, 256. https://doi.org/10.1016/j.conbuildmat.2020.119387

Kristoffersen, M., & Log, T. (2022). Experience gained from 15 years of fire protection plans for Nordic wooden towns in Norway. Safety Science, 146(October 2021). https://doi.org/10.1016/j.ssci.2021.105535

Madrid Garcia, J. A., Yahaghi, E., & Movafeghi, A. (2021). Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method. Journal of Cultural Heritage, 49(xxxx), 115–122. https://doi.org/10.1016/j.culher.2021.02.008

Martín Seijo, M., Cruz Berrocal, M., Serrano Herrero, E., & Tsang, C. (2021). Wooden material culture and long-term historical processes in Heping Dao (Keelung, Taiwan). Journal of Archaeological Science, 133, 105443. https://doi.org/10.1016/j.jas.2021.105443

Michálková, D., & Ďurica, P. (2019). Analysis of the influence of the selected exterior surface finish on the thermo-technical behaviour of passive wooden constructions. Transportation Research Procedia, 40, 823–830. https://doi.org/10.1016/j.trpro.2019.07.116

Mirra, M., Gerardini, A., & Ravenshorst, G. (2022). Application of timber-based techniques for seismic retrofit and architectural restoration of a wooden roof in a stone masonry church. Procedia Structural Integrity, 44(2022), 1856–1863. https://doi.org/10.1016/j.prostr.2023.01.237

Naguib, H. M., Taha, E. O., Ahmed, M. A., & Kandil, U. F. (2022). Enhanced wooden polymer composites based on polyethylene and nano-modified wooden flour. Egyptian Journal of Petroleum, 31(4), 39–45. https://doi.org/10.1016/j.ejpe.2022.10.002

Nasiri, B., Kaasalainen, T., & Hughes, M. (2023). Resources , Conservation & Recycling Estimating the material intensity of wooden residential houses in Finland. Resources, Conservation & Recycling, 198(August), 107142. https://doi.org/10.1016/j.resconrec.2023.107142

Ojala, A., Kostensalo, J., Viik, J., Matilainen, H., Wik, I., Virtanen, L., & Muilu-Mäkelä, R. (2023). Psychological and physiological effects of a wooden office room on human well-being: Results from a randomized controlled trial. Journal of Environmental Psychology, 89(May 2022), 102059. https://doi.org/10.1016/j.jenvp.2023.102059

Petrović, B., Eriksson, O., & Zhang, X. (2023). Carbon assessment of a wooden single-family building – A novel deep green design and elaborating on assessment parameters. Building and Environment, 233(November 2022). https://doi.org/10.1016/j.buildenv.2023.110093

Pulakka, S., Vares, S., Nykänen, E., Saari, M., & Häkkinen, T. (2016). Lean Production of Cost Optimal Wooden nZEB. Energy Procedia, 96(October 2016), 202–211. https://doi.org/10.1016/j.egypro.2016.09.122

Qiao, Z. hui, Jiang, S. fei, Tang, W. jie, & Li, N. lei. (2021). Dual-indicator prediction model for the safety of Chinese ancient wooden structures subjected to bioerosion. Journal of Building Engineering, 43(May), 102868. https://doi.org/10.1016/j.jobe.2021.102868

Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P., & Burnard, M. D. (2021). Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329. https://doi.org/10.1016/j.jclepro.2021.129587

Rahim, M., Djedjig, R., Wu, D., Bennacer, R., & Ganaoui, M. EL. (2023). Experimental investigation of hygrothermal behavior of wooden-frame house under real climate conditions. Energy and Built Environment, 4(1), 122–129. https://doi.org/10.1016/j.enbenv.2021.09.002

Raposo, P. C., Martins, J., Correia, J. A. F. O., Salavessa, M. E., Reis, C., Xavier, J. M. C., & De Jesus, A. M. P. (2017). Characterization of the Tensile Mechanical Behavior of Wooden Construction on Materials from Historic Building. Procedia Structural Integrity, 5, 1086–1091. https://doi.org/10.1016/j.prostr.2017.07.083

Schieweck, A. (2021). Very volatile organic compounds (VVOC) as emissions from wooden materials and in indoor air of new prefabricated wooden houses. Building and Environment, 190(December 2020), 107537. https://doi.org/10.1016/j.buildenv.2020.107537

Taleb, R., Ramanantoa, H., Reynolds, T., Beckett, C. T. S., Huang, Y., Rakotoarivony, M., Gagnon, A. S., & Andriamaro, L. (2023). Fragility assessment of traditional wooden houses in Madagascar subjected to extreme wind loads. Engineering Structures, 289(May), 116220. https://doi.org/10.1016/j.engstruct.2023.116220

Tobisková, N., Malmsköld, L., & Pederson, T. (2023). ScienceDirect Head-Mounted Augmented Reality Support for Assemblers of Wooden Trusses. Procedia CIRP, 119, 134–139. https://doi.org/10.1016/j.procir.2023.02.130

Toivonen, R., Vihemäki, H., & Toppinen, A. (2021). Policy narratives on wooden multi-storey construction and implications for technology innovation system governance. Forest Policy and Economics, 125. https://doi.org/10.1016/j.forpol.2021.102409

Toppinen, A., Röhr, A., Pätäri, S., Lähtinen, K., & Toivonen, R. (2018). The future of wooden multistory construction in the forest bioeconomy – A Delphi study from Finland and Sweden. Journal of Forest Economics, 31, 3–10. https://doi.org/10.1016/j.jfe.2017.05.001

Vermote, L., De Roos, J., Cnockaert, M., Vandamme, P., Weckx, S., & De Vuyst, L. (2023). New insights into the role of key microorganisms and wooden barrels during lambic beer fermentation and maturation. International Journal of Food Microbiology, 394(February), 110163. https://doi.org/10.1016/j.ijfoodmicro.2023.110163

Vestin, A., & Säfsten, K. (2021). Smart Manufacturing in the Wooden Single-Family House Industry - Status of Industry 4.0. Procedia CIRP, 104(March), 1488–1493. https://doi.org/10.1016/j.procir.2021.11.251

Vihemäki, H., Toppinen, A., & Toivonen, R. (2020). Intermediaries to accelerate the diffusion of wooden multi-storey construction in Finland. Environmental Innovation and Societal Transitions, 36(April), 433–448. https://doi.org/10.1016/j.eist.2020.04.002

Viholainen, N., Kylkilahti, E., Autio, M., Pöyhönen, J., & Toppinen, A. (2021). Bringing ecosystem thinking to sustainability-driven wooden construction business. Journal of Cleaner Production, 292. https://doi.org/10.1016/j.jclepro.2021.126029

Viljanen, A., Lähtinen, K., Kanninen, V., & Toppinen, A. (2023). A tale of five cities: The role of municipalities in the market diffusion of wooden residential multistory construction and retrofits. Forest Policy and Economics, 153(August 2022). https://doi.org/10.1016/j.forpol.2023.102991

Wegerer, P., & Bednar, T. (2017). Hygrothermal performance of wooden beam heads in inside insulated walls considering air flows. Energy Procedia, 132, 652–657. https://doi.org/10.1016/j.egypro.2017.09.710

Published

4 December 2024

Categories