INOVASI SMART FARMING DALAM PEMILIHAN JENIS TANAMAN PANGAN BERDASARKAN KONDISI LAHAN
Synopsis
Smart farming merupakan cabang ilmu komputer berbasis penalaran yang diterapkan pada bidang pertanian. Tools yang digunakan dapat melibatkan sebuah teknologi informasi dan komunikasi (TIK) berbasis cerdas, analisa seorang pakar di bidang pertanian untuk mengelola data dan kondisi pada objek, misalnya: penentuan tanaman pangan berdasarkan kondisi lahan.
Implementasi penentuan tanaman pangan menggunakan teknologi di bidang kecerdasan buatan dengan sub bidang spesifik sistem pendukung keputusan. Sistem pendukung keputusan merupakan sebuah sistem yang dapat membantu petani, pakar bidang pertanian, penyuluh dan stakeholder terkait dalam menentukan tanaman pangan produktif untuk dibudidayakan dengan menyesuaikan kondisi lahan. Untuk menghasilkan sebuah keputusan maksimal maka penulis menggunakan beberapa variasi pemodelan dalam bentuk metode/algoritma untuk menghasilkan sebuah keputusan dengan akurasi tinggi. Adapun pemodelan yang digunakan dalam buku ini yang meliputi: metode AHP, Weighted Product, SAW, Topsis, Moora dan Profile Matching.
Penulis mengucapkan banyak terima kasih kepada seluruh civitas seluruh civitas akademika Politeknik Pertanian Negeri Samarinda dan semua pihak yang telah mendukung dalam proses penyusunan buku ini.
Penulis berharap mendapatkan koreksi, saran dan masukan dari pembaca melalui email muslimin@politanisamarinda.ac.id untuk perbaikan segala kekurangan buku ini. Semoga dengan adanya buku ini maka petani, peneliti, mahasiswa maupun kalangan profesional di bidang pertanian maupun IT dapat menjadikan sebagai sumber referensi dan acuan yang dapat memberi manfaat. Terima kasih.
References
Abhiram, M. S. D., Kuppili, J., & Manga, N. A. (2020). Smart Farming System using IoT for Efficient Crop Growth. 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2020, 10–13. https://doi.org/10.1109/SCEECS48394.2020.147
Boltürk, E., Kara, A., & Kahraman, C. (2019). Simple Additive Weighting and Weighted Product Methods Using Neutrosophic Sets. https://doi.org/10.1007/978-3-030-00045-5
Daniati, E., & Utama, H. (2020). Decision Making Framework Based on Sentiment Analysis in Twitter Using SAW and Machine Learning Approach. 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, 218–222. https://doi.org/10.1109/ICOIACT50329.2020.9331998
Diana, A., & Solichin, A. (2020). Decision Support System with Fuzzy Multi-Attribute Decision Making (FMADM) and Simple Additive Weighting (SAW) in Laptop Vendor Selection. 2020 5th International Conference on Informatics and Computing, ICIC 2020. https://doi.org/10.1109/ICIC50835.2020.9288587
Gunawan, H., & Ramadhan, H. (2019). Increased Accuracy of Selection High Performing Employees Using Multi Attribute Utility Theory (MAUT). 2018 6th International Conference on Cyber and IT Service Management, CITSM 2018, CITSM, 1–4. https://doi.org/10.1109/CITSM.2018.8674060
Hadikurniawati, W., Winarno, E., Santoso, D. B., & Purwatiningtyas. (2019). A Mixed Method using AHP-TOPSIS for Dryland Agriculture Crops Selection Problem. ICICOS 2019 - 3rd International Conference on Informatics and Computational Sciences: Accelerating Informatics and Computational Research for Smarter Society in The Era of Industry 4.0, Proceedings, 4–8. https://doi.org/10.1109/ICICoS48119.2019.8982415
Huang, M. J. (2020). A novel design research based on fuzzy Kano-TOPSIS exploring the local culture on innovative campus product. Proceedings - 2020 13th International Symposium on Computational Intelligence and Design, ISCID 2020, 145–148. https://doi.org/10.1109/ISCID51228.2020.00039
Kersting, K. (2018). Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines. Frontiers in Big Data, 1(November), 1–4. https://doi.org/10.3389/fdata.2018.00006
Kittur, J. (2015). Optimal generation evaluation using SAW, WP, AHP and PROMETHEE multi - Criteria decision making techniques. Proceedings of IEEE International Conference on Technological Advancements in Power and Energy, TAP Energy 2015, 304–309. https://doi.org/10.1109/TAPENERGY.2015.7229636
Kurniawan, H., P Swondo, A., Purnama Sari, E., Ummi, K., Rusdi Tanjung, M., & Yusfrizal. (2020). Analysis and Comparative between Profile Matching and SAW Method in Decision Support. 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020. https://doi.org/10.1109/CITSM50537.2020.9268857
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334. https://doi.org/10.1109/TII.2020.3003910
Manurung, S. V. B., Larosa, F. G. N., Simamora, I. M. S., Gea, A., Simarmata, E. R., & Situmorang, A. (2019). Decision Support System of Best Teacher Selection using Method MOORA and SAW. 2019 International Conference of Computer Science and Information Technology, ICoSNIKOM 2019. https://doi.org/10.1109/ICoSNIKOM48755.2019.9111550
Minarni, M., Warman, I., & Handayani, W. (2017). Case-Based Reasoning (CBR) pada Sistem Pakar Identifikasi Hama dan Penyakit Tanaman Singkong dalam Usaha Meningkatkan Produktivitas Tanaman. Jurnal Teknoif, 5(1), 41–47.
Nababan, L., & Tuti, E. (2019). Determination Feasibility of Poor Household Surgery by Using Weighted Product Method. 2018 6th International Conference on Cyber and IT Service Management, CITSM 2018, Citsm, 1–6. https://doi.org/10.1109/CITSM.2018.8674253
Nolack Fote, F., Mahmoudi, S., Roukh, A., & Ahmed Mahmoudi, S. (2020). Big Data Storage and Analysis for Smart Farming. Proceedings of 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications, CloudTech 2020. https://doi.org/10.1109/CloudTech49835.2020.9365869
Nuriati, I., Ginting, B. S., & Maulita, Y. (2021). Sistem Pendukung Keputusan Pemilihan Jenis Tanaman Pangan Berdasarkan Kondisi Tanah dengan Metode Moora. Seminar Nasional Informatika, 285–294.
Okediran, O. O., & Ganiyu, R. A. (2019). E-Agriculture Reviewed: Theories, Concepts and Trends. FUOYE Journal of Engineering and Technology, 4(1), 125–130.
Puri, V., Chandramouli, M., Le, C. Van, & Hiep Hoa, T. (2020). Internet of Things and Fuzzy logic based hybrid approach for the Prediction of Smart Farming System. 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020, 2–6. https://doi.org/10.1109/ICCSEA49143.2020.9132933
Putra, J. A., Galwargan, A. M., & Adiwijaya, N. O. (2018). Decision support system scheme using forward chaining and simple multi attribute rating technique for best quality cocoa beans selection. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018-Octob, 122–127. https://doi.org/10.1109/EECSI.2018.8752849
Rodriguez, L. G., & Chavez, E. P. (2019). Feature Selection for Job Matching Application using Profile Matching Model. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 263–266.
Rukhiran, M., & Netinant, P. (2020). Mobile Application Development of Hydroponic Smart Farm using Information Flow Diagram. InCIT 2020 - 5th International Conference on Information Technology, 150–155. https://doi.org/10.1109/InCIT50588.2020.9310780
Sahida, A. P., Surarso, B., & Gernowo, R. (2019). The combination of the MOORA method and the Copeland Score method as a Group Decision Support System (GDSS) Vendor Selection. 2019 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, 340–345. https://doi.org/10.1109/ISRITI48646.2019.9034579
Said Mohamed, E., Belal, A. A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. Egyptian Journal of Remote Sensing and Space Science, 24(3), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007
Sakti, C. Y., Sungkono, K. R., & Sarno, R. (2019). Determination of hospital rank by using Analytic Hierarchy Process (AHP) and Multi Objective Optimization on the Basis of Ratio Analysis (MOORA). Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, 178–183. https://doi.org/10.1109/ISEMANTIC.2019.8884218
Sakti, H. T., & Thoriq, A. (2021). Expert System for Hydroponic Vegetable Cultivation Using Forward and Backward Chaining Inference Technique. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 6(2), 69–74. https://doi.org/10.25139/inform.v6i2.3905
Saparinto, Cahyo, & Hidayati, D. (2006). Bahan Tambahan Pangan. Kanisius.
Saputra, D., Akbar, F., Lisnawanty, Martias, & Rahman, A. (2021). Decision Support System For Providing Customer Reward Using Profile Matching Method. Computer Science and Electrical Engineering, 2(1), 28–37. https://doi.org/10.25008/bcsee.v2i1.1142
Sharma, R. (2021). Artificial intelligence in agriculture: A review. Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, Iciccs, 937–942. https://doi.org/10.1109/ICICCS51141.2021.9432187
Shmeleva, A. G., & Ladynin, A. I. (2019). Industrial management decision support system: From design to software. Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2019, 1474–1477. https://doi.org/10.1109/EIConRus.2019.8657313
Stevens, J. D., & Shaikh, T. (2018). MicroCEA: Developing a Personal Urban Smart Farming Device. 2nd International Conference on Smart Grid and Smart Cities, ICSGSC 2018, 49–56. https://doi.org/10.1109/ICSGSC.2018.8541311
Sukiman, Hendry, Jimmy, Sugianto, Waisen, & Suryati, L. (2020). Decision Support System for Academic Administration Staff Achievement in STMIK IBBI Using TOPSIS-HFLTS Method. MECnIT 2020 - International Conference on Mechanical, Electronics, Computer, and Industrial Technology, 282–286. https://doi.org/10.1109/MECnIT48290.2020.9166660
Tobing, D. M. L., Kurniasih, J., Tetik, Y. N., & Kusrini. (2019). The prototype of decision support system for selecting the lands of crops. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2019, 6, 276–280. https://doi.org/10.1109/ICITISEE48480.2019.9003836
Turban, E., Aronson, J. E., & Leang, T.-F. (2005). Decision Support Systems And Intelligent Systems (Edisi 7).
Xiong, N. (2019). Application of artificial intelligence technology in decision support software. Proceedings - 2019 International Conference on Virtual Reality and Intelligent Systems, ICVRIS 2019, 199–202. https://doi.org/10.1109/ICVRIS.2019.00056
Yan, C., & Qiao, B. (2012). Study and application of risk evaluation on network security based on ahp. Communications in Computer and Information Science, 289 CCIS(PART 2), 198–205. https://doi.org/10.1007/978-3-642-31968-6_24
Yingzhuo, X., & Yingmin, T. (2021). Comprehensive Evaluation Model of Elective Subjects’ Performance in the College Entrance Examination Based on Entropy Weight TOPSIS. 2021 IEEE 6th International Conference on Intelligent Computing and Signal Processing, ICSP 2021, Icsp, 208–212. https://doi.org/10.1109/ICSP51882.2021.9408939
Yuniarto, D., Herdiana, D., & Indra Junaedi, D. (2020). Smart Farming Precision Agriculture Project Success based on Information Technology Capability. 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020. https://doi.org/10.1109/CITSM50537.2020.9268807